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1 The Open Mapping Theorem, Closed Graph Theorem,
and Uniform Boundedness Principle

1.1 The open mapping theorem

Definition 1.1. Let X and Y be topological spaces. A function f : X → Y is open if
f [U ] is open for all open U ⊆ X.

Remark 1.1. In metric spaces, this is equivalent to: For all B(x, r) ⊆ X, there is an ε > 0
such that f [B(x, r)] ⊇ B(f(x), ε). In normed spaces, it is enough to check this at x = 0X .

Theorem 1.1 (Open mapping theorem). Let X,Y be Banach spaces. If A : X → Y is a
bounded linear surjection, then A is open.

Proof. Step 1: Write Y =
⋃∞

n=1A(BX(0, n)). By the Baire category theorem, these cannot

all be nowhere dense. So there exist n ∈ N, y ∈ Y , t > 0 such that A(BX(0, n)) ⊇ By(y, t).

The left hand side is symmetric under z 7→ −z, so A(BX(0, n)) ⊇ BY (−y, t), as well. By
convexity,

A(BX(0, n)) ⊇
{
1

2
(y + z) +

1

2
(−y + w) : ‖z‖Y , ‖w‖Y < t

}
=

{
1

2
z +

1

2
w : ‖z‖Y , ‖w‖Y < t

}
= BY (0, t).

Step 2: For any a > 0,
A(BX(0, an)) ⊇ B(0, at).

Step 3: We will show that A(BX(0, 2)) ⊇ B(0, r). for r = t/n. Let y ∈ BY (0, r). By
step 2, there is an x1 ∈ BX(0, 1) such that ‖y−Ax1‖ < r/2. Let y1 = y−Ax1, and choose
x2 ∈ Bx(0, 1/2) such that ‖y1 − Ax2‖ < r/2. In this way, pick yn, xn+1 for each n. Let
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x =
∑∞

n=1 xn; this converges because the lengths are bounded by a convergent geometric
series: ‖x‖ ≤

∑
n ‖xn‖ < 2. Then Ax =

∑∞
n=1Axn. For each N ∈ N,

y −
N∑

n=1

Axn = y1 −
N∑

n=2

Axn = y2 −
N∑

n=3

Axn = · · · = yN ,

and ‖yN‖ − r/2N−1 → 0. So y = Ax.

Corollary 1.1. A bounded linear bijection between Banach spaces is an isomorphism.

Proof. Since A : X → Y is a bijection, A−1 exists as a linear transformation Y → X.
Boundedness of A−1 is precisely the openness of A.

Definition 1.2. If A : X → Y , then graph of A is gra(A) := {(x,Ax) : x ∈ X} ⊆ X ⊕ Y .
It is a linear subspace of X ⊕ Y with the graph norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y .

1.2 The closed graph theorem

Corollary 1.2 (Closed graph theorem). Let X,Y be Banach spaces, and let A : X → Y
be a linear transformation. If gra(A) is closed, then A is continuous.

Proof. gra(A) is a closed subspace of a Banach space, so it is complete. In the following
diagram, A = P2 ◦ Ã, so it is enough to show that Ã is continuous.

A gra(A)

Y

Ã:x 7→(x, Ax)

A
P2:(x, y) 7→y

But Ã = (P1|gra(A))
−1, so it is continuous by the previous corollary.

Example 1.1. Let X = C(1)[0, 1] and Y = C[0, 1], both with the uniform norm. Then A
sending f 7→ f ′ is not continuous. But its graph, gra(A) = {(f, f ′) : f ∈ C(1)} is closed:
Suppose (fn)n is such that fn → g uniformly, and f ′n → h uniformly. Then fn − f → 0,
which means that f ′n− g′ → h− g′ uniformly; sp we may assume that fn → 0 and f ′n → h.
We must show that h = 0. We have that for all t ∈ [0, 1]. so∫ t

0
h(s) ds = lim

n

∫ t

0
f ′n = lim

n
[fn(t)− fn(0)] = 0.

So h = 0.

In general, gra(A) is closed if xn → 0 and Axn → y implies y → 0. This is often easier
to check than continuity.
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1.3 The principle of uniform boundedness

Theorem 1.2 (Principle of uniform boundedness). Let X be a Banach space, let Y be a
normed space, and let A ⊆ B(X,Y ). Assume that sup{‖Ax‖ : A ∈ A} <∞ for all x ∈ X.
Then sup{‖A‖ : A ∈ A} <∞.

Instead of citing Baire category, we will adapt the proof of that theorem to prove this.

Proof. Assume, towards a contradiction, that M(x) := sup{‖Ax‖ : A ∈ A} <∞ for all x,
but supA∈A ‖A‖ =∞. So for every ε > 0, there is an x ∈ X and A ∈ A such that ‖x‖ < ε
and ‖Ax‖ > 1/ε.

Construct sequences (xn) in x and (An) in A by recursion: Pick any ‖x1‖ = 1 and any
A1. Now choose (x2, A2) such that ‖x2‖ ≤ 1/2, ‖A1x2‖ ≤ 1/2, and ‖A2x2‖ > 2 +M(x1).
Now choose (x3, A3) such that ‖x3‖, ‖A1x3‖, ‖A2x3‖ < 1/4 but ‖A3x3‖ > 3 + M(x1) +
M(x2). At the n-th stage, choose (xn, An) such that ‖xn‖, ‖A1xn‖, . . . , ‖An−1xn‖ < 1/2n

but ‖Anxn‖?n+M(x1) +M(x2) + · · ·+M(xn−1).
Now let x =

∑∞
n=1 xn. Then

Akx =
∞∑
n=1

Akxn

=

k−1∑
n=1

Akxn︸ ︷︷ ︸
‖·‖≤M(x1)+···+M(xk+1)

+ Akxk︸ ︷︷ ︸
‖·‖>k+M(x1)+···+M(xk−1)

+

∞∑
k+1

Akxn︸ ︷︷ ︸
‖·‖≤2−k

So ‖Akx‖ > k − 1, which implies that M(x) =∞. This is a contradiction.

Corollary 1.3. Let X be a Banach space. If A ⊆ X∗ is such that sup{|L(x)| : L ∈ A} for
all x, then supL∈A ‖L‖ <∞.

Corollary 1.4. Let Y be a normed space. If A ⊆ Y and sup{|L(a)| : a ∈ A} <∞ for all
L ∈ Y ∗, then supa∈A ‖a‖ <∞.

Proof. Consider the natural embedding of A into Â ⊆ Y ∗∗.

Corollary 1.5. Let X be a Banach space, let Y be a normed space, and let A ⊆ B(C, Y ).
If sup{|L(Ax)| : A ∈ A} <∞ for all x ∈ X and L ∈ Y ∗, then A is uniformly bounded.

Proof. This is a double application of the principle of uniform boundedness.

Theorem 1.3 (Banach-Steinhaus). Let X,Y be Banach spaces. Let (An)n be a sequence
in B(X,Y ). If for every x, there is a y such that Anx→ y, then

1. supn ‖An‖ <∞,

2. There exists some A ∈ B(X < Y ) such that Anx→ Ax.
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