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1 The Open Mapping Theorem, Closed Graph Theorem,
and Uniform Boundedness Principle

1.1 The open mapping theorem

Definition 1.1. Let X and Y be topological spaces. A function f : X — Y is open if
f[U] is open for all open U C X.

Remark 1.1. In metric spaces, this is equivalent to: For all B(x,r) C X, thereisane > 0
such that f[B(x,r)] 2 B(f(z),€). In normed spaces, it is enough to check this at x = 0x.

Theorem 1.1 (Open mapping theorem). Let X,Y be Banach spaces. If A: X —Y isa
bounded linear surjection, then A is open.

Proof. Step 1: Write Y = ;- ; A(Bx(0,n)). By the Baire category theorem, these cannot
all be nowhere dense. So there exist n € N, y € Y, ¢t > 0 such that A(Bx(0,n)) 2 By(y,1).
The left hand side is symmetric under z — —z, so A(Bx(0,n)) 2 By(—y,t), as well. By
convexity,

ABx O 2 {0+ 2) + oyt ) el fuly < ¢}

2
1 1
= {22 + Jw: lzllvs lw|ly < t}
= By (0,1).

Step 2: For any a > 0,
A(Bx(0,an)) 2 B(0,at).

Step 3: We will show that A(Bx(0,2)) 2 B(0,r). for r = t/n. Let y € By(0,7). By
step 2, there is an 71 € Bx(0,1) such that ||y — Az|| < 7/2. Let y1 =y — Az, and choose
x2 € Bg(0,1/2) such that ||y3 — Aza|| < r/2. In this way, pick yn,zn4+1 for each n. Let



x = Y >° . xp; this converges because the lengths are bounded by a convergent geometric

n=1
series: ||z]| < >, [lznl| < 2. Then Az =37 Az,. For each N € N,
n=1 n=2 n=3
and |lyn|| — /2"t —= 0. So y = Ax. O

Corollary 1.1. A bounded linear bijection between Banach spaces is an isomorphism.

Proof. Since A : X — Y is a bijection, A~! exists as a linear transformation ¥ — X.
Boundedness of A~! is precisely the openness of A. O

Definition 1.2. If A: X — Y, then graph of A is gra(A) := {(z,Az) :2 € X} C X Y.
It is a linear subspace of X @Y with the graph norm ||(z,v)|| = ||z|x + [|y]ly-
1.2 The closed graph theorem

Corollary 1.2 (Closed graph theorem). Let X,Y be Banach spaces, and let A: X —'Y
be a linear transformation. If gra(A) is closed, then A is continuous.

Proof. gra(A) is a closed subspace of a Banach space, so it is complete. In the following
diagram, A = P, o A, so it is enough to show that A is continuous.

A A:x—(z, Ax) gra(A)

A Pz, y)—y
Y
But A = (P1]gra( A))*l, so it is continuous by the previous corollary. O

Example 1.1. Let X = C(V[0,1] and Y = C|0, 1], both with the uniform norm. Then A
sending f — f’ is not continuous. But its graph, gra(4) = {(f, f/) : f € CM} is closed:
Suppose (fn)n is such that f, — g uniformly, and f; — h uniformly. Then f, — f — 0,
which means that f, — ¢’ — h — ¢’ uniformly; sp we may assume that f,, — 0 and f], — h.
We must show that h = 0. We have that for all ¢ € [0,1]. so

[ hs)yds =tim [ = timl ) - £2(0)) = 0
0 0

So h =0.

In general, gra(A) is closed if x,, — 0 and Ax,, — y implies y — 0. This is often easier
to check than continuity.



1.3 The principle of uniform boundedness

Theorem 1.2 (Principle of uniform boundedness). Let X be a Banach space, let Y be a
normed space, and let A C B(X,Y). Assume that sup{||Az| : A € A} < oo for allxz € X.
Then sup{||A]| : A € A} < c0.

Instead of citing Baire category, we will adapt the proof of that theorem to prove this.

Proof. Assume, towards a contradiction, that M (z) := sup{||Az|| : A € A} < oo for all z,
but sup 4 4 ||A]| = oo. So for every € > 0, there is an € X and A € A such that ||z| < e
and ||Az| > 1/e.

Construct sequences (z,) in x and (4,) in A by recursion: Pick any [|z1]| = 1 and any
A;. Now choose (x2, Az) such that ||xs|| < 1/2, ||A1z2|| < 1/2, and ||Asxa|| > 2 + M(x1).
Now choose (z3,As) such that ||z3], [[A123]|, ||[A2xs|| < 1/4 but ||Aszs| > 3 + M(x1) +
M (z2). At the n-th stage, choose (x,, Ay) such that ||z, ||, [[Aizn],- -, |An—12n| < 1/27
but [[Anzn||?n + M(x1) + M (z2) + -+ + M(xp_1).

Now let © = Y >° | z,,. Then

Akx = i Aka:n
n=1

k—1 0o
= > A + Agxy, +) Apy
=1 k+1
¢ [ [>k+M(@1)++M(zp—y) 5T
[I<SM(z1)+-+M(zk41) [|-|<2-*
So ||Agx|| > k — 1, which implies that M (z) = oo. This is a contradiction. O

Corollary 1.3. Let X be a Banach space. If A C X* is such that sup{|L(x)|: L € A} for
all z, then suppcy4 || L] < oo.

Corollary 1.4. Let Y be a normed space. If A CY and sup{|L(a)|: a € A} < co for all
L e Y*, then sup,e 4 ||al < oo.

Proof. Consider the natural embedding of A into A C Y**. O

Corollary 1.5. Let X be a Banach space, let Y be a normed space, and let A C B(C,Y).
If sup{|L(Az)| : A€ A} < oo for allz € X and L € Y*, then A is uniformly bounded.

Proof. This is a double application of the principle of uniform boundedness. O

Theorem 1.3 (Banach-Steinhaus). Let X,Y be Banach spaces. Let (Ay,), be a sequence
in B(X,Y). If for every x, there is a y such that Ay,x — vy, then

1. sup,, ||An|| < oo,
2. There ezists some A € B(X <Y) such that A,z — Azx.
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