Math 255A' Lecture 7 Notes

Daniel Raban

October 11, 2019

1 The Open Mapping Theorem, Closed Graph Theorem, and Uniform Boundedness Principle

1.1 The open mapping theorem

Definition 1.1. Let X and Y be topological spaces. A function $f: X \to Y$ is **open** if f[U] is open for all open $U \subseteq X$.

Remark 1.1. In metric spaces, this is equivalent to: For all $B(x,r) \subseteq X$, there is an $\varepsilon > 0$ such that $f[B(x,r)] \supseteq B(f(x),\varepsilon)$. In normed spaces, it is enough to check this at $x = 0_X$.

Theorem 1.1 (Open mapping theorem). Let X, Y be Banach spaces. If $A: X \to Y$ is a bounded linear surjection, then A is open.

Proof. Step 1: Write $Y = \bigcup_{n=1}^{\infty} \overline{A(B_X(0,n))}$. By the Baire category theorem, these cannot all be nowhere dense. So there exist $n \in \mathbb{N}$, $y \in Y$, t > 0 such that $\overline{A(B_X(0,n))} \supseteq B_y(y,t)$. The left hand side is symmetric under $z \mapsto -z$, so $\overline{A(B_X(0,n))} \supseteq B_Y(-y,t)$, as well. By convexity,

$$\overline{A(B_X(0,n))} \supseteq \left\{ \frac{1}{2}(y+z) + \frac{1}{2}(-y+w) : ||z||_Y, ||w||_Y < t \right\}$$

$$= \left\{ \frac{1}{2}z + \frac{1}{2}w : ||z||_Y, ||w||_Y < t \right\}$$

$$= B_Y(0,t).$$

Step 2: For any a > 0,

$$\overline{A(B_X(0,an))} \supseteq B(0,at).$$

Step 3: We will show that $A(B_X(0,2)) \supseteq B(0,r)$. for r = t/n. Let $y \in B_Y(0,r)$. By step 2, there is an $x_1 \in B_X(0,1)$ such that $||y - Ax_1|| < r/2$. Let $y_1 = y - Ax_1$, and choose $x_2 \in B_X(0,1/2)$ such that $||y_1 - Ax_2|| < r/2$. In this way, pick y_n, x_{n+1} for each n. Let

 $x = \sum_{n=1}^{\infty} x_n$; this converges because the lengths are bounded by a convergent geometric series: $||x|| \leq \sum_n ||x_n|| < 2$. Then $Ax = \sum_{n=1}^{\infty} Ax_n$. For each $N \in \mathbb{N}$,

$$y - \sum_{n=1}^{N} Ax_n = y_1 - \sum_{n=2}^{N} Ax_n = y_2 - \sum_{n=3}^{N} Ax_n = \dots = y_N,$$

and $||y_N|| - r/2^{N-1} \to 0$. So y = Ax.

Corollary 1.1. A bounded linear bijection between Banach spaces is an isomorphism.

Proof. Since $A: X \to Y$ is a bijection, A^{-1} exists as a linear transformation $Y \to X$. Boundedness of A^{-1} is precisely the openness of A.

Definition 1.2. If $A: X \to Y$, then **graph** of A is $gra(A) := \{(x, Ax) : x \in X\} \subseteq X \oplus Y$. It is a linear subspace of $X \oplus Y$ with the **graph norm** $\|(x, y)\| = \|x\|_X + \|y\|_Y$.

1.2 The closed graph theorem

Corollary 1.2 (Closed graph theorem). Let X, Y be Banach spaces, and let $A: X \to Y$ be a linear transformation. If gra(A) is closed, then A is continuous.

Proof. gra(A) is a closed subspace of a Banach space, so it is complete. In the following diagram, $A = P_2 \circ \tilde{A}$, so it is enough to show that \tilde{A} is continuous.

$$A \xrightarrow{\tilde{A}:x\mapsto(x,\ Ax)} \operatorname{gra}(A)$$

$$\downarrow P_2:(x,\ y)\mapsto y$$

$$\downarrow Y$$

But $\tilde{A} = (P_1|_{gra(A)})^{-1}$, so it is continuous by the previous corollary.

Example 1.1. Let $X = C^{(1)}[0,1]$ and Y = C[0,1], both with the uniform norm. Then A sending $f \mapsto f'$ is not continuous. But its graph, $\operatorname{gra}(A) = \{(f,f') : f \in C^{(1)}\}$ is closed: Suppose $(f_n)_n$ is such that $f_n \to g$ uniformly, and $f'_n \to h$ uniformly. Then $f_n - f \to 0$, which means that $f'_n - g' \to h - g'$ uniformly; sp we may assume that $f_n \to 0$ and $f'_n \to h$. We must show that h = 0. We have that for all $t \in [0,1]$. so

$$\int_0^t h(s) \, ds = \lim_n \int_0^t f_n' = \lim_n [f_n(t) - f_n(0)] = 0.$$

So h = 0.

In general, gra(A) is closed if $x_n \to 0$ and $Ax_n \to y$ implies $y \to 0$. This is often easier to check than continuity.

1.3 The principle of uniform boundedness

Theorem 1.2 (Principle of uniform boundedness). Let X be a Banach space, let Y be a normed space, and let $A \subseteq \mathcal{B}(X,Y)$. Assume that $\sup\{\|Ax\| : A \in A\} < \infty$ for all $x \in X$. Then $\sup\{\|A\| : A \in A\} < \infty$.

Instead of citing Baire category, we will adapt the proof of that theorem to prove this.

Proof. Assume, towards a contradiction, that $M(x) := \sup\{\|Ax\| : A \in \mathcal{A}\} < \infty$ for all x, but $\sup_{A \in \mathcal{A}} \|A\| = \infty$. So for every $\varepsilon > 0$, there is an $x \in X$ and $A \in \mathcal{A}$ such that $\|x\| < \varepsilon$ and $\|Ax\| > 1/\varepsilon$.

Construct sequences (x_n) in x and (A_n) in A by recursion: Pick any $||x_1|| = 1$ and any A_1 . Now choose (x_2, A_2) such that $||x_2|| \le 1/2$, $||A_1x_2|| \le 1/2$, and $||A_2x_2|| > 2 + M(x_1)$. Now choose (x_3, A_3) such that $||x_3||$, $||A_1x_3||$, $||A_2x_3|| < 1/4$ but $||A_3x_3|| > 3 + M(x_1) + M(x_2)$. At the n-th stage, choose (x_n, A_n) such that $||x_n||$, $||A_1x_n||$, ..., $||A_{n-1}x_n|| < 1/2^n$ but $||A_nx_n|| > n + M(x_1) + M(x_2) + \cdots + M(x_{n-1})$.

Now let $x = \sum_{n=1}^{\infty} x_n$. Then

$$A_k x = \sum_{n=1}^{\infty} A_k x_n$$

$$= \sum_{n=1}^{k-1} A_k x_n + \underbrace{A_k x_k}_{\|\cdot\| > k + M(x_1) + \dots + M(x_{k-1})} + \sum_{k=1}^{\infty} A_k x_n$$

$$\|\cdot\| \le M(x_1) + \dots + M(x_{k+1})$$

So $||A_k x|| > k - 1$, which implies that $M(x) = \infty$. This is a contradiction.

Corollary 1.3. Let X be a Banach space. If $A \subseteq X^*$ is such that $\sup\{|L(x)| : L \in A\}$ for all x, then $\sup_{L \in A} ||L|| < \infty$.

Corollary 1.4. Let Y be a normed space. If $A \subseteq Y$ and $\sup\{|L(a)| : a \in A\} < \infty$ for all $L \in Y^*$, then $\sup_{a \in A} ||a|| < \infty$.

Proof. Consider the natural embedding of A into $\hat{A} \subseteq Y^{**}$.

Corollary 1.5. Let X be a Banach space, let Y be a normed space, and let $A \subseteq \mathcal{B}(C, Y)$. If $\sup\{|L(Ax)| : A \in \mathcal{A}\} < \infty$ for all $x \in X$ and $L \in Y^*$, then A is uniformly bounded.

Proof. This is a double application of the principle of uniform boundedness. \Box

Theorem 1.3 (Banach-Steinhaus). Let X, Y be Banach spaces. Let $(A_n)_n$ be a sequence in $\mathcal{B}(X,Y)$. If for every x, there is a y such that $A_n x \to y$, then

- 1. $\sup_n ||A_n|| < \infty$,
- 2. There exists some $A \in \mathcal{B}(X < Y)$ such that $A_n x \to Ax$.